
Complex Analysis: Final Exam

Aletta Jacobshal 01, Wednesday 27 January 2016, 18:30 – 21:30
Exam duration: 3 hours

Instructions — read carefully before starting
- Do not forget to very clearly write your full name and student number on each answer sheet and on
the envelope. Do not seal the ennvelope.

- The exam consists of 6 questions; answer all of them.
- The total number of points is 100 and 10 points are “free”.. The exam grade is the total number of points
divided by 10.

- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas,
theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.

- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (12 points)

(a) (6 points) Verify that the exponential function f(z) = ez satisfies the Cauchy-Riemann
equations.
Solution
Write

f(z) = ex+iy = ex cos y + iex sin y,

and identify

u = ex cos y, v = ex sin y.

Then we have that

∂u

∂x
= ex cos y = ∂v

∂y
,

and

∂u

∂y
= −ex sin y = −∂v

∂x
.

Therefore the Cauchy-Riemann equations are satisfied.
(b) (6 points) Show that the Taylor series of the exponential function f(z) = ez around z0 ∈ C

is given by

ez = ez0
∞∑
j=0

(z − z0)j

j! .

What is the domain where the Taylor series of ez around z0 converges? [If necessary, you
can use without proof the Taylor series of ez around 0.]
Solution
Write w = z − z0. Then

f(z) = ez = ez0+w = ez0ew = ez0
∞∑
j=0

wj

j! = ez0
∞∑
j=0

(z − z0)j

j!

Since ez is entire, the domain of convergence is C.



Question 2 (18 points)

Consider the function

f(z) = eiz

z2 − 4 .

(a) (6 points) Compute the residue of f(z) at each one of the singularities of f(z).
Solution
The singularities of f(z) are z = 2 and z = −2, obtained as solutions of z2 − 4 = 0.
Each of the singularities is a pole of order 1. Therefore,

Res(f ; 2) = lim
z→2

(z − 2) eiz

z2 − 4 = lim
z→2

eiz

z + 2 = e2i

4 ,

and

Res(f ;−2) = lim
z→−2

(z + 2) eiz

z2 − 4 = lim
z→−2

eiz

z − 2 = −e
−2i

4 .

(b) (12 points) Compute the principal value

pv
∫ ∞
−∞

eix

x2 − 4 dx.

Solution
We have

I = pv
∫ ∞
−∞

cosx
x2 − 4 dx = lim

R→∞
r1,r2→0+

(∫ −2−r1

−R
+
∫ 2−r2

−2+r1
+
∫ R

2+r2

)
eix

x2 − 4 dx.

Defining the contour γ1 as the straight line along the real axis from −R to −2 − r1, the
contour γ2 from −2 + r1 to 2− r2, and γ3 from 2 + r2 to R, we can write

I = lim
R→∞

r1,r2→0+

(∫
γ1

+
∫
γ2

+
∫
γ3

)
eiz

z2 − 4 dz.

We define a closed positively oriented contour Γ as

Γ = γ1 + S+
r1 + γ2 + S+

r2 + γ3 + C+
R ,

where S+
r1 is the half-circle of radius r1 and center −2 in the upper half-plane joining −2−r1

to −2 + r1, S+
r2 is the half-circle of radius r2 and center 2 in the upper half-plane joining

2− r2 to 2 + r2, and C+
R is the half-circle of radius R and center 0 in the upper half-plane

joining R to −R.
Then ∫

Γ

eiz

z2 − 4 dz = 0

for all values of R, r1, r2 since Γ does not enclose any singularities of the integrand.
Furthermore, we have

lim
r1→0+

∫
S+

r1

eiz

z2 − 4 dz = −πiRes(f ;−2) = πie−2i

4 ,
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and

lim
r2→0+

∫
S+

r2

eiz

z2 − 4 dz = −πiRes(f ; 2) = −πie
2i

4 .

For the integral over C+
R we have that the coefficient of iz in eiz is positive, and the degree

of the denominator in 1/(z2 − 4) is 2 while the degree of the numerator is 0, and we can
apply Jordan’s lemma to get

lim
R→∞

∫
C+

R

eiz

z2 − 4 dz = 0.

Therefore

lim
R→∞

r1,r2→0+

(∫
γ1

+
∫
γ2

+
∫
γ3

+
∫
S+

r1

+
∫
S+

r2

+
∫
C+

R

)
eiz

z2 − 4 dz = lim
R→∞

r1,r2→0+

∫
Γ

eiz

z2 − 4 dz = 0,

and the left-hand side gives

I + πie−2i

4 − πie2i

4 + 0 = 0.

From here

I = πi

4 (e2i − e−2i) = −π2 sin 2.

Question 3 (14 points)

Consider the branch f(z) = e
1
3L0(z) of the cubic root function z

1
3 . The branch L0(z) of the

logarithm has a branch cut along the positive real axis.
(a) (6 points) Compute f(−i) and f ′(−i). Write the results in Cartesian form.

Solution
We have

L0(−i) = Log | − i|+ i arg0(−i) = 3π
2 i.

Then

f(−i) = e
1
3L0(−i) = eiπ/2 = i.

Moreover,

f ′(z) = 1
3e

1
3L0(z)L′0(z) = 1

3z f(z).

Then

f ′(−i) = 1
3(−i)f(−i) = −1

3 .

(b) (8 points) Evaluate the limits limε→0+ f(x+ iε) and limε→0+ f(x− iε) for x > 0. Express
the limits in terms of 3

√
x, that is, the positive real cubic root of the real number x > 0.
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Solution
We have

lim
ε→0+

L0(x+ iε) = lim
ε→0+

Log |x+ iε|+ i lim
ε→0+

arg0(x+ iε) = Log |x| = Log x.

We used here that the function Log |z| is continuous so the first limit is Log |x| while for
x > 0 and ε > 0 the second limit is 0. Then, using the continuity of the exponential,

lim
ε→0+

f(x+ iε) = e
1
3 limε→0+ L0(x+iε) = e

1
3 Log x = 3√x.

Then we have

lim
ε→0+

L0(x− iε) = lim
ε→0+

Log |x− iε|+ i lim
ε→0+

arg0(x− iε) = Log |x|+ 2πi = Log x+ 2πi.

We used here again that the function Log |z| is continuous so the first limit is Log |x| while
for x > 0 and ε > 0 the second limit is 2π. Then, using the continuity of the exponential,

lim
ε→0+

f(x− iε) = e
1
3 limε→0+ L0(x−iε) = e

1
3 (Log x+2πi) = e2πi/3 3√x.

Question 4 (14 points)

Consider the function

f(z) = 1
z − 1 + 2

2− z .

(a) (4 points) Determine the singularities of f(z) and their type.
Solution
The singularities are z = 1 and z = 2 and they are both simple poles (poles of order 1).

(b) (10 points) Compute the Laurent series at 0 of the function in the domain 1 < |z| < 2.
Solution
We have

1
z − 1 = 1

z

1
1− 1

z

= 1
z

∞∑
j=0

1
zj

=
∞∑
j=0

1
zj+1 =

∞∑
j=1

1
zj

=
−1∑

j=−∞
zj ,

where in the second step we used the geometric series since |1/z| < 1.
We also have

2
2− z = 1

1− z
2

=
∞∑
j=0

zj

2j ,

where in the last step we used the geometric series since |z/2| < 1.
Therefore the Laurent series in the domain 1 < |z| < 2 is

f(z) =
−1∑

j=−∞
zj +

∞∑
j=0

2−jzj ,

or

f(z) =
∞∑

j=−∞
cjz

j ,

where cj = 1 for j ≤ −1 and cj = 2−j for j ≥ 0.
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Question 5 (16 points)

(a) (6 points) Given the function

f(z) = (z − 4)(z − 1)2 sin z
z2 + 1 ,

evaluate the integral ∫
C

f ′(z)
f(z) dz,

where C is the positively oriented circular contour with |z| = 2.
Solution
The Argument Principle gives that under the assumptions in this question we have∫

C

f ′(z)
f(z) dz = 2πi[N0(f)−Np(f)],

where N0(f) is the number of zeros of f(z) inside C, counting multiplicities, and Np(f) is
the number of poles of f(z) inside C, counting orders.
The function f(z) has zeros at 4, 1 (double zero), and kπ with k ∈ Z. The only zeros
inside C are 1 (double) and 0. Therefore, N0(f) = 3. The poles are at ±i and they both
lie inside C. Therefore, ∫

C

f ′(z)
f(z) dz = 2πi[3− 2] = 2πi.

(b) (10 points) Use Rouché’s theorem to show that the polynomial P (z) = εz3 + z2 + 1, where
0 < ε < 3/8, has exactly 2 roots in the disk |z| < 2.
Solution
We apply Rouché’s theorem with f(z) = z2 + 1 and h(z) = εz3. The function f(z) has
exactly two zeros ±i and they both lie in the disk |z| < 2. To conclude that P (z) also
has exactly two zeros inside the same disk we must check that |h(z)| < |f(z)| on the circle
|z| = 2.
For |z| = 2 we have

|f(z)| = |z2 + 1| ≥ ||z2| − 1| = ||z|2 − 1| = 3,

and

|h(z)| = |εz3| = ε|z|3 = 8ε < 3 ≤ |f(z)|.

Therefore, |h(z)| < |f(z)| for |z| = 2 and applying Rouché’s theorem gives the required
result.

Question 6 (16 points)

(a) (8 points) Show that ∣∣∣∣∫
C

ez

z + 1 dz
∣∣∣∣ ≤ 2πe2,

where C is the positively oriented circle |z − 1| = 1.
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Solution
On C we have that 0 ≤ x ≤ 2 where x = Re z. It is possible to see this by drawing C
or by noticing that x − 1 = Re(z) − 1 = Re(z − 1) and we always have |Rew| ≤ |w|, so
|x− 1| ≤ 1. Therefore,

|ez| = |exeiy| = ex ≤ e2.

Moreover,

|z + 1| = |(z − 1) + 2| ≥ ||z − 1| − 2| = |1− 2| = 1.

Therefore, ∣∣∣∣ ez

z + 1

∣∣∣∣ ≤ e2.

This means ∣∣∣∣∫
C

ez

z + 1 dz
∣∣∣∣ ≤ e2`(C) = 2πe2,

where, in the last step, we used that the length of the circle C of radius 1 is 2π.

(b) (8 points) Suppose that f(z) is an analytic function in a domain D and it has no zeros in
D. Show that if |f(z)| attains its minimum in D (that is, there exists a point z0 ∈ D such
that |f(z0)| ≤ |f(z)| for all z ∈ D), then f(z) is constant.
Solution
Consider the function

g(z) = 1
f(z) .

Since f(z) 6= 0 for all z ∈ D we conclude that g is analytic in D.
Furthermore,

|g(z0)| = 1
|f(z0)| ≥

1
|f(z)| = |g(z)|,

for all z ∈ D. In other words, |g(z)| attains its maximum in D. From the maximum
modulus principle this means that g(z) is constant in D and therefore f(z) is also constant
in D.

End of the exam (Total: 90 points)
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