Complex Analysis: Final Exam

Aletta Jacobshal 01, Wednesday 27 January 2016, 18:30-21:30
Exam duration: 3 hours

Instructions - read carefully before starting

- Do not forget to very clearly write your full name and student number on each answer sheet and on the envelope. Do not seal the ennvelope.
- The exam consists of 6 questions; answer all of them.
- The total number of points is 100 and 10 points are "free".. The exam grade is the total number of points divided by 10 .
- Solutions should be complete and clearly present your reasoning. If you use known results (lemmas, theorems, formulas, etc.) you must explain why the conditions for using such results are satisfied.
- You are allowed to have a 2-sided A4-sized paper with handwritten notes.

Question 1 (12 points)

(a) (6 points) Verify that the exponential function $f(z)=e^{z}$ satisfies the Cauchy-Riemann equations.

Solution

Write

$$
f(z)=e^{x+i y}=e^{x} \cos y+i e^{x} \sin y,
$$

and identify

$$
u=e^{x} \cos y, \quad v=e^{x} \sin y .
$$

Then we have that

$$
\frac{\partial u}{\partial x}=e^{x} \cos y=\frac{\partial v}{\partial y},
$$

and

$$
\frac{\partial u}{\partial y}=-e^{x} \sin y=-\frac{\partial v}{\partial x}
$$

Therefore the Cauchy-Riemann equations are satisfied.
(b) (6 points) Show that the Taylor series of the exponential function $f(z)=e^{z}$ around $z_{0} \in \mathbb{C}$ is given by

$$
e^{z}=e^{z_{0}} \sum_{j=0}^{\infty} \frac{\left(z-z_{0}\right)^{j}}{j!} .
$$

What is the domain where the Taylor series of e^{z} around z_{0} converges? [If necessary, you can use without proof the Taylor series of e^{z} around 0.]

Solution

Write $w=z-z_{0}$. Then

$$
f(z)=e^{z}=e^{z_{0}+w}=e^{z_{0}} e^{w}=e^{z_{0}} \sum_{j=0}^{\infty} \frac{w^{j}}{j!}=e^{z_{0}} \sum_{j=0}^{\infty} \frac{\left(z-z_{0}\right)^{j}}{j!}
$$

Since e^{z} is entire, the domain of convergence is \mathbb{C}.

Question 2 (18 points)

Consider the function

$$
f(z)=\frac{e^{i z}}{z^{2}-4}
$$

(a) (6 points) Compute the residue of $f(z)$ at each one of the singularities of $f(z)$.

Solution

The singularities of $f(z)$ are $z=2$ and $z=-2$, obtained as solutions of $z^{2}-4=0$.
Each of the singularities is a pole of order 1. Therefore,

$$
\operatorname{Res}(f ; 2)=\lim _{z \rightarrow 2}(z-2) \frac{e^{i z}}{z^{2}-4}=\lim _{z \rightarrow 2} \frac{e^{i z}}{z+2}=\frac{e^{2 i}}{4}
$$

and

$$
\operatorname{Res}(f ;-2)=\lim _{z \rightarrow-2}(z+2) \frac{e^{i z}}{z^{2}-4}=\lim _{z \rightarrow-2} \frac{e^{i z}}{z-2}=-\frac{e^{-2 i}}{4}
$$

(b) (12 points) Compute the principal value

$$
\operatorname{pv} \int_{-\infty}^{\infty} \frac{e^{i x}}{x^{2}-4} d x
$$

Solution

We have

$$
I=\mathrm{pv} \int_{-\infty}^{\infty} \frac{\cos x}{x^{2}-4} d x=\lim _{\substack{R \rightarrow \infty \\ r_{1}, r_{2} \rightarrow 0^{+}}}\left(\int_{-R}^{-2-r_{1}}+\int_{-2+r_{1}}^{2-r_{2}}+\int_{2+r_{2}}^{R}\right) \frac{e^{i x}}{x^{2}-4} d x
$$

Defining the contour γ_{1} as the straight line along the real axis from $-R$ to $-2-r_{1}$, the contour γ_{2} from $-2+r_{1}$ to $2-r_{2}$, and γ_{3} from $2+r_{2}$ to R, we can write

$$
I=\lim _{\substack{R \rightarrow \infty \\ r_{1}, r_{2} \rightarrow 0^{+}}}\left(\int_{\gamma_{1}}+\int_{\gamma_{2}}+\int_{\gamma_{3}}\right) \frac{e^{i z}}{z^{2}-4} d z
$$

We define a closed positively oriented contour Γ as

$$
\Gamma=\gamma_{1}+S_{r_{1}}^{+}+\gamma_{2}+S_{r_{2}}^{+}+\gamma_{3}+C_{R}^{+}
$$

where $S_{r_{1}}^{+}$is the half-circle of radius r_{1} and center -2 in the upper half-plane joining $-2-r_{1}$ to $-2+r_{1}, S_{r_{2}}^{+}$is the half-circle of radius r_{2} and center 2 in the upper half-plane joining $2-r_{2}$ to $2+r_{2}$, and C_{R}^{+}is the half-circle of radius R and center 0 in the upper half-plane joining R to $-R$.
Then

$$
\int_{\Gamma} \frac{e^{i z}}{z^{2}-4} d z=0
$$

for all values of R, r_{1}, r_{2} since Γ does not enclose any singularities of the integrand.
Furthermore, we have

$$
\lim _{r_{1} \rightarrow 0^{+}} \int_{S_{r_{1}}^{+}} \frac{e^{i z}}{z^{2}-4} d z=-\pi i \operatorname{Res}(f ;-2)=\frac{\pi i e^{-2 i}}{4}
$$

and

$$
\lim _{r_{2} \rightarrow 0^{+}} \int_{S_{r_{2}}^{+}} \frac{e^{i z}}{z^{2}-4} d z=-\pi i \operatorname{Res}(f ; 2)=-\frac{\pi i e^{2 i}}{4}
$$

For the integral over C_{R}^{+}we have that the coefficient of $i z$ in $e^{i z}$ is positive, and the degree of the denominator in $1 /\left(z^{2}-4\right)$ is 2 while the degree of the numerator is 0 , and we can apply Jordan's lemma to get

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} \frac{e^{i z}}{z^{2}-4} d z=0
$$

Therefore

$$
\lim _{\substack{R \rightarrow \infty \\ r_{1}, r_{2} \rightarrow 0^{+}}}\left(\int_{\gamma_{1}}+\int_{\gamma_{2}}+\int_{\gamma_{3}}+\int_{S_{r_{1}}^{+}}+\int_{S_{r_{2}}^{+}}+\int_{C_{R}^{+}}\right) \frac{e^{i z}}{z^{2}-4} d z=\lim _{\substack{R \rightarrow \infty \\ r_{1}, r_{2} \rightarrow 0^{+}}} \int_{\Gamma} \frac{e^{i z}}{z^{2}-4} d z=0
$$

and the left-hand side gives

$$
I+\frac{\pi i e^{-2 i}}{4}-\frac{\pi i e^{2 i}}{4}+0=0
$$

From here

$$
I=\frac{\pi i}{4}\left(e^{2 i}-e^{-2 i}\right)=-\frac{\pi}{2} \sin 2
$$

Question 3 (14 points)

Consider the branch $f(z)=e^{\frac{1}{3} \mathcal{L}_{0}(z)}$ of the cubic root function $z^{\frac{1}{3}}$. The branch $\mathcal{L}_{0}(z)$ of the logarithm has a branch cut along the positive real axis.
(a) (6 points) Compute $f(-i)$ and $f^{\prime}(-i)$. Write the results in Cartesian form.

Solution

We have

$$
\mathcal{L}_{0}(-i)=\log |-i|+i \arg _{0}(-i)=\frac{3 \pi}{2} i
$$

Then

$$
f(-i)=e^{\frac{1}{3} \mathcal{L}_{0}(-i)}=e^{i \pi / 2}=i
$$

Moreover,

$$
f^{\prime}(z)=\frac{1}{3} e^{\frac{1}{3} \mathcal{L}_{0}(z)} \mathcal{L}_{0}^{\prime}(z)=\frac{1}{3 z} f(z) .
$$

Then

$$
f^{\prime}(-i)=\frac{1}{3(-i)} f(-i)=-\frac{1}{3}
$$

(b) (8 points) Evaluate the limits $\lim _{\varepsilon \rightarrow 0^{+}} f(x+i \varepsilon)$ and $\lim _{\varepsilon \rightarrow 0^{+}} f(x-i \varepsilon)$ for $x>0$. Express the limits in terms of $\sqrt[3]{x}$, that is, the positive real cubic root of the real number $x>0$.

Solution

We have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{L}_{0}(x+i \varepsilon)=\lim _{\varepsilon \rightarrow 0^{+}} \log |x+i \varepsilon|+i \lim _{\varepsilon \rightarrow 0^{+}} \arg _{0}(x+i \varepsilon)=\log |x|=\log x .
$$

We used here that the function $\log |z|$ is continuous so the first limit is $\log |x|$ while for $x>0$ and $\varepsilon>0$ the second limit is 0 . Then, using the continuity of the exponential,

$$
\lim _{\varepsilon \rightarrow 0^{+}} f(x+i \varepsilon)=e^{\frac{1}{3} \lim _{\varepsilon \rightarrow 0^{+}} \mathcal{L}_{0}(x+i \varepsilon)}=e^{\frac{1}{3} \log x}=\sqrt[3]{x}
$$

Then we have

$$
\lim _{\varepsilon \rightarrow 0^{+}} \mathcal{L}_{0}(x-i \varepsilon)=\lim _{\varepsilon \rightarrow 0^{+}} \log |x-i \varepsilon|+i \lim _{\varepsilon \rightarrow 0^{+}} \arg _{0}(x-i \varepsilon)=\log |x|+2 \pi i=\log x+2 \pi i .
$$

We used here again that the function $\log |z|$ is continuous so the first limit is $\log |x|$ while for $x>0$ and $\varepsilon>0$ the second limit is 2π. Then, using the continuity of the exponential,

$$
\lim _{\varepsilon \rightarrow 0^{+}} f(x-i \varepsilon)=e^{\frac{1}{3} \lim _{\varepsilon \rightarrow 0^{+}} \mathcal{L}_{0}(x-i \varepsilon)}=e^{\frac{1}{3}(\log x+2 \pi i)}=e^{2 \pi i / 3} \sqrt[3]{x} .
$$

Question 4 (14 points)

Consider the function

$$
f(z)=\frac{1}{z-1}+\frac{2}{2-z} .
$$

(a) (4 points) Determine the singularities of $f(z)$ and their type.

Solution

The singularities are $z=1$ and $z=2$ and they are both simple poles (poles of order 1).
(b) (10 points) Compute the Laurent series at 0 of the function in the domain $1<|z|<2$.

Solution

We have

$$
\frac{1}{z-1}=\frac{1}{z} \frac{1}{1-\frac{1}{z}}=\frac{1}{z} \sum_{j=0}^{\infty} \frac{1}{z^{j}}=\sum_{j=0}^{\infty} \frac{1}{z^{j+1}}=\sum_{j=1}^{\infty} \frac{1}{z^{j}}=\sum_{j=-\infty}^{-1} z^{j},
$$

where in the second step we used the geometric series since $|1 / z|<1$.
We also have

$$
\frac{2}{2-z}=\frac{1}{1-\frac{z}{2}}=\sum_{j=0}^{\infty} \frac{z^{j}}{2^{j}},
$$

where in the last step we used the geometric series since $|z / 2|<1$.
Therefore the Laurent series in the domain $1<|z|<2$ is

$$
f(z)=\sum_{j=-\infty}^{-1} z^{j}+\sum_{j=0}^{\infty} 2^{-j} z^{j},
$$

or

$$
f(z)=\sum_{j=-\infty}^{\infty} c_{j} z^{j}
$$

where $c_{j}=1$ for $j \leq-1$ and $c_{j}=2^{-j}$ for $j \geq 0$.

Question 5 (16 points)

(a) (6 points) Given the function

$$
f(z)=\frac{(z-4)(z-1)^{2} \sin z}{z^{2}+1}
$$

evaluate the integral

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z
$$

where C is the positively oriented circular contour with $|z|=2$.

Solution

The Argument Principle gives that under the assumptions in this question we have

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i\left[N_{0}(f)-N_{p}(f)\right]
$$

where $N_{0}(f)$ is the number of zeros of $f(z)$ inside C, counting multiplicities, and $N_{p}(f)$ is the number of poles of $f(z)$ inside C, counting orders.
The function $f(z)$ has zeros at 4,1 (double zero), and $k \pi$ with $k \in \mathbb{Z}$. The only zeros inside C are 1 (double) and 0 . Therefore, $N_{0}(f)=3$. The poles are at $\pm i$ and they both lie inside C. Therefore,

$$
\int_{C} \frac{f^{\prime}(z)}{f(z)} d z=2 \pi i[3-2]=2 \pi i .
$$

(b) (10 points) Use Rouché's theorem to show that the polynomial $P(z)=\varepsilon z^{3}+z^{2}+1$, where $0<\varepsilon<3 / 8$, has exactly 2 roots in the disk $|z|<2$.

Solution

We apply Rouché's theorem with $f(z)=z^{2}+1$ and $h(z)=\varepsilon z^{3}$. The function $f(z)$ has exactly two zeros $\pm i$ and they both lie in the disk $|z|<2$. To conclude that $P(z)$ also has exactly two zeros inside the same disk we must check that $|h(z)|<|f(z)|$ on the circle $|z|=2$.
For $|z|=2$ we have

$$
|f(z)|=\left|z^{2}+1\right| \geq\left|\left|z^{2}\right|-1\right|=\left||z|^{2}-1\right|=3,
$$

and

$$
|h(z)|=\left|\varepsilon z^{3}\right|=\varepsilon|z|^{3}=8 \varepsilon<3 \leq|f(z)| .
$$

Therefore, $|h(z)|<|f(z)|$ for $|z|=2$ and applying Rouché's theorem gives the required result.

Question 6 (16 points)

(a) (8 points) Show that

$$
\left|\int_{C} \frac{e^{z}}{z+1} d z\right| \leq 2 \pi e^{2}
$$

where C is the positively oriented circle $|z-1|=1$.

Solution

On C we have that $0 \leq x \leq 2$ where $x=\operatorname{Re} z$. It is possible to see this by drawing C or by noticing that $x-1=\operatorname{Re}(z)-1=\operatorname{Re}(z-1)$ and we always have $|\operatorname{Re} w| \leq|w|$, so $|x-1| \leq 1$. Therefore,

$$
\left|e^{z}\right|=\left|e^{x} e^{i y}\right|=e^{x} \leq e^{2} .
$$

Moreover,

$$
|z+1|=|(z-1)+2| \geq||z-1|-2|=|1-2|=1 .
$$

Therefore,

$$
\left|\frac{e^{z}}{z+1}\right| \leq e^{2}
$$

This means

$$
\left|\int_{C} \frac{e^{z}}{z+1} d z\right| \leq e^{2} \ell(C)=2 \pi e^{2}
$$

where, in the last step, we used that the length of the circle C of radius 1 is 2π.
(b) (8 points) Suppose that $f(z)$ is an analytic function in a domain D and it has no zeros in D. Show that if $|f(z)|$ attains its minimum in D (that is, there exists a point $z_{0} \in D$ such that $\left|f\left(z_{0}\right)\right| \leq|f(z)|$ for all $\left.z \in D\right)$, then $f(z)$ is constant.

Solution

Consider the function

$$
g(z)=\frac{1}{f(z)} .
$$

Since $f(z) \neq 0$ for all $z \in D$ we conclude that g is analytic in D.
Furthermore,

$$
\left|g\left(z_{0}\right)\right|=\frac{1}{\left|f\left(z_{0}\right)\right|} \geq \frac{1}{|f(z)|}=|g(z)|
$$

for all $z \in D$. In other words, $|g(z)|$ attains its maximum in D. From the maximum modulus principle this means that $g(z)$ is constant in D and therefore $f(z)$ is also constant in D.

End of the exam (Total: 90 points)

